Topic 6 Test Kinetics Wed 4/5/17 [28 marks]

1. Consider the reaction between magnesium and hydrochloric acid. Which factors will affect the reaction rate?
I. The collision frequency of the reactant particles
II. The number of reactant particles with $E \geqslant E_{\text {a }}$
III. The number of reactant particles that collide with the appropriate geometry
A. I and II only
B. I and III only
C. II and III only
D. I, II and III

Markscheme

D

Examiners report

[N/A]
2.

Curve \mathbf{X} on the graph below shows the volume of oxygen formed during the catalytic decomposition of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of [1 mark] hydrogen peroxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which change would produce the curve \mathbf{Y} ?
A. Adding water
B. Adding some $0.1 \mathrm{~mol} \mathrm{dm}-3$ hydrogen peroxide solution
C. Using a different catalyst
D. Lowering the temperature

Markscheme

B

Examiners report

Two respondents stated that this question was somewhat misleading. The question was one of the more challenging questions on the paper but 51.70% of candidates did get B. as the correct answer.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Which conditions will produce the fastest initial rate with 2.0 g of powdered sodium carbonate?
A. $\quad 100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid at 323 K
B. $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{moldm}^{-3}$ hydrochloric acid at 323 K
C. $100 \mathrm{~cm}^{3}$ of $1.0 \mathrm{moldm}^{-3}$ hydrochloric acid at 348 K
D. $50 \mathrm{~cm}^{3}$ of $2.0 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid at 348 K

Markscheme

D

Examiners report

[N/A]
4. Which are appropriate units for the rate of a reaction?
A. $\mathrm{moldm} \mathrm{d}^{-3} \mathrm{~S}^{-1}$
B. $\mathrm{moldm}{ }^{-3} \mathrm{~S}$
C. moldm^{-3}
D. s

Markscheme

A

Examiners report

[$N / A]$
5.

The following enthalpy level diagram shows the effect of the addition of a catalyst on a chemical reaction. What do $\boldsymbol{m}, \boldsymbol{n}$ and $\boldsymbol{o} \quad[1$ mark] represent?
A.
B.
C.
D.

m	n	o
ΔH	E_{a} (without a catalyst)	E_{a} (with a catalyst)
E_{a} (with a catalyst)	ΔH	E_{a} (without a catalyst)
E_{a} (with a catalyst)	E_{a} (without a catalyst)	ΔH
ΔH	E_{a} (with a catalyst)	E_{a} (without a catalyst)

Markscheme

D

Examiners report

[N/A]

Chemical kinetics involves an understanding of how the molecular world changes with time.

For the reaction below, consider the following experimental data.

$$
2 \mathrm{ClO}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Experiment	Initial $\left[\mathrm{ClO}_{2}(\mathbf{a q})\right] /$ moldm^{-3}	Initial $\left[\mathrm{OH}^{-}(\mathrm{aq})\right] /$ $\mathrm{mol} \mathrm{dm}^{-3}$	Initial rate / mol dm ${ }^{-3} \mathrm{~s}^{-1}$
1	1.00×10^{-1}	1.00×10^{-1}	2.30×10^{-1}
2	5.00×10^{-2}	1.00×10^{-1}	5.75×10^{-2}
3	5.00×10^{-2}	3.00×10^{-2}	1.73×10^{-2}

6a.
Deduce the rate expression.
(ii) Determine the rate constant, k, and state its units, using the data from Experiment 2.
(iii) Calculate the rate, in $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{~s}^{-1}$, when $\left[\mathrm{ClO}_{2}(\mathrm{aq})\right]=1.50 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and $\left[\mathrm{OH}^{-}(\mathrm{aq})\right]=2.35 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$.
\qquad

Markscheme

(i) second order in ClO_{2} and first order in OH^{-};
rate $=k\left[\mathrm{ClO}_{2}\right]^{2}\left[\mathrm{OH}^{-}\right] ;$
Award [2] for correct final answer.
(ii) $k=2.30 \times 10^{2} / 230$;
$\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$;
(iii) $1.22 \times 10^{-3} / 0.00122\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~S}^{-1}\right)$;

Examiners report

In part (d), many candidates also scored highly though the units of k in (ii) did cause a problem for some candidates.

A two-step mechanism has been proposed for the following reaction.

$$
\begin{array}{ll}
\text { Step 1: } & \mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\text { Step 2: } & \mathrm{ClO}_{2}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
\end{array}
$$

6 b .
Deduce the overall equation for the reaction.
[1 mark]
\qquad

Markscheme

$3 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{ClO}_{3}^{-}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) ;$
Ignore state symbols.

Examiners report

One respondent stated that part (f) (ii) would be difficult for candidates. (f) certainly did prove challenging and the rate expression for step two was often given incorrectly. This question became a good discriminating question in Section B. However the better students did manage to score all three marks in part (f).

Step 1:

Step 2:
\qquad

Markscheme

Step 1: rate $=k\left[\mathrm{ClO}^{-}\right]^{2}$;
Step 2: rate $=k\left[\mathrm{ClO}_{2}^{-}\right]\left[\mathrm{ClO}^{-}\right]$;
Penalize missing k once only.

Examiners report

One respondent stated that part (f) (ii) would be difficult for candidates. (f) certainly did prove challenging and the rate expression for step two was often given incorrectly. This question became a good discriminating question in Section B. However the better students did manage to score all three marks in part (f).
7. Which graph best represents the relationship between the average kinetic energy of molecules of a gas and temperature in K? [1 mark]
A.

B.

D.

Markscheme

D

Examiners report

Some respondents mentioned in their G2 forms that the question was not appropriate as they could not find in the syllabus details where the specific relationship between temperature in K and average kinetic energy of molecules of gas is mentioned. In assessment statement 6.2 .1 in the syllabus details it is clearly stated that "average kinetic energy is proportional to temperature in kelvins". 48.33% of the candidates chose the correct answer D. The discrimination index for this question was 0.42 which is reasonably good.
\square

Markscheme

change in concentration of reactant/product with time / rate of change of concentration;
Accept "increase" instead of "change" for product and "decrease" instead of "change" for reactant.
Accept "mass/amount/volume" instead of "concentration".
Do not accept substance.

Examiners report

Although most candidates were able to define the rate of reaction, some of weaker candidates gave imprecise answers which did not refer to concentration of the reactants or products and the "the time for the reaction to go to completion" was not an uncommon response. Most candidates realized that the surface area would decrease but, as in previous sessions, lost marks as they did not refer to the reduced "frequency" of collisions. Most candidates were able to identify the rate determining step and correctly state that the reaction would be first order with respect to hydrogen however only a minority could explain their answer in sufficient detail i.e. that H_{2} was involved only once in the formation of the intermediate before the rate determining step.

Nitrogen(II) oxide reacts with hydrogen according to the equation below.

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

A suggested mechanism for this reaction is:

$$
\text { Step 1: } \quad \mathrm{NO}+\mathrm{H}_{2} \rightleftharpoons \mathrm{X} \quad \text { fast }
$$

Step 2: $\mathrm{X}+\mathrm{NO} \rightarrow \mathrm{Y}+\mathrm{H}_{2} \mathrm{O} \quad$ slow
Step 3: $\mathrm{Y}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$ fast

Markscheme

step 2 / $\mathrm{X}+\mathrm{NO} \rightarrow \mathrm{Y}+\mathrm{H}_{2} \mathrm{O}$ / slow;

Examiners report

Although most candidates were able to define the rate of reaction, some of weaker candidates gave imprecise answers which did not refer to concentration of the reactants or products and the "the time for the reaction to go to completion" was not an uncommon response. Most candidates realized that the surface area would decrease but, as in previous sessions, lost marks as they did not refer to the reduced "frequency" of collisions. Most candidates were able to identify the rate determining step and correctly state that the reaction would be first order with respect to hydrogen however only a minority could explain their answer in sufficient detail i.e. that H_{2} was involved only once in the formation of the intermediate before the rate determining step.

9

Consider the following reaction mechanism
[1 mark]
Step $1 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{IO}^{-} \quad$ slow
Step $2 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{IO}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{I}^{-}$fast
Which statement correctly identifies the rate-determining step and the explanation?
A. Step 2 because it is the faster step
B. Step 1 because it is the slower step
C. Step 1 because it is the first step
D. Step 2 because it is the last step

Markscheme

B

Examiners report

[N/A]

10
The following data were obtained for the reaction between gases A and B.

Experiment	Initial $[\mathbf{A}] / \mathrm{mol} \mathrm{dm}^{-3}$	Initial $[\mathrm{B}] / \mathrm{mol} \mathrm{dm}^{-3}$	Initial rate $/ \mathrm{mol} \mathrm{dm}^{-3} \mathbf{m i n}^{-1}$
1	1.0×10^{-3}	1.0×10^{-3}	2.0×10^{-4}
2	2.0×10^{-3}	1.0×10^{-3}	2.0×10^{-4}
3	2.0×10^{-3}	2.0×10^{-3}	4.0×10^{-4}

Which relationship represents the rate expression for the reaction?
A. \quad rate $=k[\mathrm{~B}]^{2}$
B. \quad rate $=k[\mathrm{~A}]^{2}$
C. \quad rate $=k[\mathrm{~A}]$
D. \quad rate $=k[\mathrm{~B}]$

Markscheme

Examiners report

[$N / A]$
11. What happens when the temperature of a reaction increases?
A. The activation energy increases.
B. The rate constant increases.
C. The enthalpy change increases.
D. The order of the reaction increases.

Markscheme

B

Examiners report

[$N / A]$

Sodium thiosulfate solution, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$, and hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$, react to produce solid sulfur as in the equation below.

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{S}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The following results to determine the initial rate were obtained:

Experiment	$\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})\right] / \mathrm{moldm}^{-\mathbf{3}}$	$\left[\mathrm{H}^{+}(\mathrm{aq})\right] / \mathrm{mol} \mathrm{dm}^{-\mathbf{3}}$	Initial rate $/ \mathrm{moldm}^{\mathbf{- 3} \mathrm{s}^{\mathbf{- 1}}}$
1	0.200	2.00	0.036
2	0.200	1.00	0.036
3	0.100	1.00	0.018

12a. Deduce, with a reason, the order of reaction with respect to each reactant.
\qquad

Markscheme

```
experiments 1 and 2 ([ }\mp@subsup{\textrm{S}}{2}{}\mp@subsup{\textrm{O}}{3}{2-}] remains constant) change in [H+[ does not affect the rate so zero order with respect to H H (aq) /
OWTTE;
experiment 1/2 and 3([ }\mp@subsup{\textrm{H}}{}{+}]\mathrm{ has no effect) [ }\mp@subsup{\textrm{S}}{2}{}\mp@subsup{\textrm{O}}{3}{2-}]\mathrm{ is halved and rate is also halved so first order with respect to [ }\mp@subsup{\textrm{S}}{2}{}\mp@subsup{\textrm{O}}{3}{2-}]/ OWTTE
Accept explanation given in mathematical terms.
Award [1 max] if both [S2O3-] ] is first order, and [H+}]\mathrm{ is zero order are stated without reason.
```


Examiners report

The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of K_{c} were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how E_{a} is determined from experimental data was lacking, too often a vague description of using gradient and R without context was considered sufficient by many candidates.

2b. State the rate expression for this reaction.

[1 mark]
\qquad

Markscheme

rate $=k\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right] ;$

Examiners report

The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of K_{c} were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how E_{a} is determined from experimental data was lacking, too often a vague description of using gradient and R without context was considered sufficient by many candidates.
\qquad

Markscheme

0.18 ;
s^{-1};

Examiners report

The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of K_{c} were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how E_{a} is determined from experimental data was lacking, too often a vague description of using gradient and R without context was considered sufficient by many candidates.
\qquad

Markscheme

$\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \mathrm{S}+\mathrm{SO}_{3}^{2-} ;$
Accept any balanced equation that starts with only one $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.
Equations must be balanced in terms of number of atoms and charge.

Examiners report

The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of K_{c} were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how E_{a} is determined from experimental data was lacking, too often a vague description of using gradient and R without context was considered sufficient by many candidates.
\qquad

Markscheme

determine rate at a range of temperatures (while keeping concentrations constant);
calculate k for each temperature;
plot graph of $\ln k$ against T^{-1};
gradient is $\frac{-E_{\mathrm{a}}}{R} /$ OWTTE;

Examiners report

The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of K_{c} were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how $E_{\text {a }}$ is determined from experimental data was lacking, too often a vague description of using gradient and R without context was considered sufficient by many candidates.

